Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$, a flavone, was isolated from the rhizomes of Kaempferia parviflora. The benzopyran-4-one ring system and the methoxyphenyl substituent are approximately coplanar. The molecules are linked via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains.

Comment

We have been investigating the compounds present in Kaempferia parviflora, a plant growing in the northeastern part of Thailand. Previously, we have reported the isolation and crystal structures of two flavonoids from the rhizomes of this plant (Fun et al., 2005; Teh et al., 2005). The title compound, (I), was also isolated from the rhizomes of K. parviflora, which were collected from Loei province in the northeastern part of Thailand. Compound (I), a known flavone, is a secondary metabolite occurring in plants. It does not exhibit antiplasmodium, antifungal, antimycobacterial and cytotoxic activities against KB (oral human epidermoid carcinoma), BC (breast cancer) and NCI-H187 (human small cell lung cancer) cell lines (Yenjai et al., 2004). As part of our ongoing studies on the phytochemistry and biological activities of Thai medicinal plants (Chantrapromma et al., 2003, 2004, 2005; Boonnak et al., 2005; Cheenpracha et al., 2005; Fun et al., 2005; Ng et al., 2005; Pakhathirathien et al., 2005; Teh et al., 2005), we have undertaken the X-ray crystal structure analysis of (I) in order to establish its stereochemistry.

(I)

The bond lengths and angles in (I) (Fig. 1) show normal values (Allen et al., 1987) and are comparable to those observed in 5-hydroxy-3,7-dimethoxy-2-phenyl-4H-1-benzo-pyran-4-one, (II) (Fun et al., 2005), and 3,5,7-trimethoxy-2-phenyl-4H-1-benzopyran-4-one, (III) (Teh et al., 2005). Selected bond lengths and angles are given in Table 1. The benzopyran-4-one ($\mathrm{C} 1-\mathrm{C} 9 / \mathrm{O} 1$) ring system is planar within ± 0.028 (1) \AA. The $\mathrm{C} 1-\mathrm{C} 9 / \mathrm{O} 1$ ring system and $\mathrm{C} 10-\mathrm{C} 15$ benzene ring are approximately coplanar, with a dihedral angle of $7.78(7)^{\circ}$. The corresponding dihedral angles are 38.00 (3) (molecule A) and 13.99 (3) ${ }^{\circ}$ (molecule B) in (II)

Received 5 October 2005 Accepted 11 October 2005 Online 19 October 2005

[^0]
Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.128$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates a hydrogen bond.

Figure 2
The crystal packing of (I), viewed down the b axis, showing hydrogenbonded (dashed lines) chains.
(Fun et al., 2005), and 31.05 (4) ${ }^{\circ}$ in (III) (Teh et al., 2005). The two methoxy groups are coplanar with the attached rings.

An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed in the molecular structure (Table 2). Inversion-related molecules are linked by $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 2^{\mathrm{ii}}$ (symmetry codes are given in Table 2) hydrogen bonds into a chain along the a axis (Fig. 2).

Experimental

Air-dried rhizomes of K. parviflora were milled and extracted with hexane and CHCl_{3} at room temperature. The residue obtained after evaporation of the solvent was separated by quick column chromatography (QCC) over silica gel and eluted with $3 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane
to afford seven fractions (F1-F7). Fraction F2 was subjected to column chromatography (CC) with 10% acetone-hexane to give five fractions (F2A-F2E). Compound (I) was obtained from fraction F2D. Single crystals of (I) suitable for X-ray diffraction studies were obtained by recrystallization from $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(4: 1 \mathrm{v} / \mathrm{v})$ after several days (m.p. 447-448 K).

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$
$M_{r}=298.28$
Monoclinic, $P 2_{1} / c$
$a=16.9406$ (4) \AA
$b=3.8619$ (1) \AA
$c=21.7968$ (4) \AA
$\beta=106.52(1)^{\circ}$
$V=1367.15(9) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.449 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3581 \\
& \quad \text { reflections } \\
& \theta=2.0-28.0^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.54 \times 0.15 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.912, T_{\text {max }}=0.992$
17884 measured reflections

> 3283 independent reflections
> 2207 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.035$
> $\theta_{\max }=28.0^{\circ}$
> $h=-21 \rightarrow 22$
> $k=-5 \rightarrow 5$
> $l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0571 P)^{2}\right. \\
& \quad+0.2601 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-C9	$1.3645(17)$	O4-C16	$1.420(2)$
O1-C1	$1.3804(18)$	O5-C13	$1.3570(18)$
O2-C7	$1.2578(17)$	O5-C17	$1.426(2)$
O3-C5	$1.3526(18)$	C8-C9	$1.354(2)$
O4-C3	$1.3652(19)$		
C3-O4-C16	$118.12(14)$	C11-C10-C9	$121.11(13)$
C13-O5-C17	$118.72(13)$		
C16-O4-C3-C2	$-171.93(16)$	C17-O5-C13-C12	$-3.3(3)$
C16-O4-C3-C4	$7.7(3)$	C17-O5-C13-C14	$176.77(16)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.83	$2.571(2)$	149
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.54	$3.441(2)$	163
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.52	$3.430(2)$	167
Symmetry codes: (i) $x, y, z ;$ (ii) $-x+1,-y+1,-z+1 ;$ (iii) $-x,-y+1,-z+1$				

H atoms were placed in calculated positions, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for hydroxy and methyl H atoms, and $1.2 U_{\text {eq }}$ for the remaining H atoms.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve
structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

NW thanks the Development and Promotion of Science and Technology Talents Project for financial support. The authors thank the Directed Basic Research in Medicinal Chemistry (Thailand Research Fund), NSU (Prince of Songkla University), the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/635003/A118 and the USM short-term grant No. 304/PFIZIK/635028.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-urRahman \& Karalai, C. (2005). Acta Cryst. E61, o410-o412.

Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, K., Saewan, N., Fun, H. K., Chantrapromma, S. \& Atta-urRahman (2004). Acta Cryst. E60, o312-o314.
Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. \& Atta-ur-Rahman (2005). Acta Cryst. E61, o2136-o2138.

Chantrapromma, S., Fun, H.-K., Razak, I. A., Laphookhieo, S. \& Karalai, C. (2003). Acta Cryst. E59, o1864-o1866.

Cheenpracha, S., Srisuwan, R., Karalai, C., Ponglimanont, C., Chantrapromma, S., Chantrapromma, K., Fun, H.-K., Anjum, S. \& Atta-ur-Rahman (2005). Tetrahedron, 61, 8656-8662.

Fun, H.-K., Razak, I. A., Boonnak, N., Laphookhieo, S., \& Chantrapromma, S. (2005). Acta Cryst. E61, o3086-o3088.

Ng, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. \& Prawat, U. (2005). Acta Cryst. E61, o3234-o3236.

Pakhathirathien, C., Chantrapromma, S., Fun, H.-K., Anjum, S., Atta-urRahman \& Karalai, C. (2005). Acta Cryst. E61, o2942-o2944.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Teh, J.B.-J., Fun, H.-K., Razak, I. A., Boonnak, N., Chantrapromma, S. \& Karalai, C. (2005). Acta Cryst. E61, o3653-o3655.
Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich, V. \& Kittakoop, P. (2004). Fitoterapia, 75, 89-92.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
Jeannie Bee-Jan Teh, ${ }^{\text {a }}$
Hoong-Kun Fun, ${ }^{\text {a }} *$
Ibrahim Abdul Razak, ${ }^{\text {a }}$ Suchada
Chantrapromma, ${ }^{\text {b }}$ Nawong
Boonnak $^{\mathbf{b}}$ and Chatchanok
Karalai $^{\mathbf{b}}$
${ }^{\text {a } X \text {-ray Crystallography Unit, School of Physics, }}$ Universiti Sains Malaysia, 11800 USM, Penang Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.128$
Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one. Corrigendum

In the paper by Teh, Fun, Razak, Chantrapromma, Boonnak \& Karalai [Acta Cryst. (2005), E61, o3715-o3717], the data collection temperature is given incorrectly. The correct temperature is given below and in the revised 'Key indicators'.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$
$M_{r}=298.28$
Monoclinic, $P 2_{1} / c$
$a=16.9406$ (4) \AA
$b=3.8619$ (1) \AA
$c=21.7968$ (4) A
$\beta=106.52$ (1) ${ }^{\circ}$
$V=1367.15(9) \AA^{3}$
$Z=4$
$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3581 reflections
$\theta=2.0-28.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Plate, colourless
$0.54 \times 0.15 \times 0.08 \mathrm{~mm}$

Received 14 November 2005
Accepted 16 November 2005
Online 19 November 2005

[^0]: (C) 2005 International Union of Crystallography

